Yahaan kuch pramukh AI tools ke naam hain:
TensorFlow: TensorFlow, Google dvaara vikasit kiya gaya ek pramukh open-source machine learning framework hai. Iska upayog machine learning, deep learning aur neural network model banane ke liye kiya jaata hai.
PyTorch: PyTorch, Facebook dvaara vikasit kiya gaya ek aur prasiddh open-source deep learning framework hai. Iska upayog neural networks aur tensor computations ke liye kiya jaata hai. PyTorch flexibility aur developer-friendly nature ke liye jaana jaata hai.
Keras: Keras, ek high-level neural networks API hai jo TensorFlow ke saath kaam karta hai. Yeh ek user-friendly framework hai aur deep learning models ki development ko aasaan banata hai.
scikit-learn: scikit-learn, Python ke liye ek prasiddh machine learning library hai. Yeh bahut sare machine learning algorithms, preprocessing techniques, model evaluation tools, aur data visualization utilities pradaan karta hai.
Microsoft Cognitive Toolkit (CNTK): Microsoft Cognitive Toolkit, Microsoft dvaara vikasit kiya gaya ek open-source deep learning framework hai. Iska upayog image recognition, speech recognition, aur language processing jaise applications ke liye kiya jaata hai.
IBM Watson: IBM Watson ek AI-powered platform hai jo natural language processing, machine learning, computer vision, aur data analysis ke liye upayog hone wala hai. Yeh ek saas-based platform hai jo bahut sare AI tools aur services pradaan karta hai.
H2O.ai: H2O.ai, open-source machine learning platform hai jo distributed computing aur big data analytics ko support karta hai. Yeh scalability, performance, aur ease-of-use ke liye prasiddh hai.
OpenAI: OpenAI, ek AI research lab hai jo prabhaavit kshetron mein inovetion aur research ke liye vikasit kiya gaya hai. Iska udeshya hai ki sahaj aur surakshit AI praudyogiki ka vikaas karein.
Ye sirf kuch pramukh AI tools hain aur aapko isse zyada aur bhi tools aur libraries duniya bhar mein milenge, jinme se kuch open-source hai aur kuch proprietary. Aapko in tools mein se apne specific requirements ke anusar ek ya ek se zyada tools ka chayan karna hoga.
TensorFlow: TensorFlow, Google dvaara vikasit kiya gaya ek pramukh open-source machine learning framework hai. Iska upayog machine learning, deep learning aur neural network model banane ke liye kiya jaata hai.
PyTorch: PyTorch, Facebook dvaara vikasit kiya gaya ek aur prasiddh open-source deep learning framework hai. Iska upayog neural networks aur tensor computations ke liye kiya jaata hai. PyTorch flexibility aur developer-friendly nature ke liye jaana jaata hai.
Keras: Keras, ek high-level neural networks API hai jo TensorFlow ke saath kaam karta hai. Yeh ek user-friendly framework hai aur deep learning models ki development ko aasaan banata hai.
scikit-learn: scikit-learn, Python ke liye ek prasiddh machine learning library hai. Yeh bahut sare machine learning algorithms, preprocessing techniques, model evaluation tools, aur data visualization utilities pradaan karta hai.
Microsoft Cognitive Toolkit (CNTK): Microsoft Cognitive Toolkit, Microsoft dvaara vikasit kiya gaya ek open-source deep learning framework hai. Iska upayog image recognition, speech recognition, aur language processing jaise applications ke liye kiya jaata hai.
IBM Watson: IBM Watson ek AI-powered platform hai jo natural language processing, machine learning, computer vision, aur data analysis ke liye upayog hone wala hai. Yeh ek saas-based platform hai jo bahut sare AI tools aur services pradaan karta hai.
H2O.ai: H2O.ai, open-source machine learning platform hai jo distributed computing aur big data analytics ko support karta hai. Yeh scalability, performance, aur ease-of-use ke liye prasiddh hai.
OpenAI: OpenAI, ek AI research lab hai jo prabhaavit kshetron mein inovetion aur research ke liye vikasit kiya gaya hai. Iska udeshya hai ki sahaj aur surakshit AI praudyogiki ka vikaas karein.
Ye sirf kuch pramukh AI tools hain aur aapko isse zyada aur bhi tools aur libraries duniya bhar mein milenge, jinme se kuch open-source hai aur kuch proprietary. Aapko in tools mein se apne specific requirements ke anusar ek ya ek se zyada tools ka chayan karna hoga.
Comments
Post a Comment